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Statistical kinetics of the bacterial flagellar motor
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The statistical behavior of the bacterial flagellar motor matches that of a Poisson stepper that takes at least
400 steps per revolution. Using this fact, we study the effect of motor stochastics on experiments in which
fluorescent motors, initially synchronized by polarization photobleaching, become uncorrelated.
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PACS numbds): 87.22—-q, 87.10+€, 82.40--g, 05.40:+j

I. INTRODUCTION II. EVOLUTION OF PROBABILITY DENSITY

. . . . OF A POISSON STEPPER ON A CYCLIC LATTICE
A bacterial flagellum is driven at its base by a rotary

motor [1]. Numerous studies have classified the subunits of Given a stepper initially at the zeroth site on a cyclic
this motor into functional and structural groups. The statordattice of N sites, the probability of the stepper being at the
includes a discrete set of torque-generating units comprisintfh site at timet is the probability that the stepper has taken
the proteins MotA and MotB2,3]. Each unit steps indepen- jN+i steps wherg is a positive integer. So the probability
dently along a ring of lattice sites attached to the rgtdr that the stepper is at the zeroth site at tinie the sum of the
The likely location of these sites is in the C-terminal domainProbabilities that the stepper has madhl,@N, ... steps. If

of the protein FIiG, a component of the MS and C rifi§s the stepper is Poisson, each of these probabllltles is given by
For a recent review of motor structure see Macf&b the Poisson formulze.g.,[10]) yielding the sum

Motor function is usually studied by tethering a single
flagellar filament to glass; the relative motion of the stator xo(t)=e ”E
and rotor is inferred from the motion of the tethered cell
body[7]. However, the relative motion of subunits within the
motor might be directly measurable using polarization anHere u is the mean number of steps taken in titeThe
isotropy. Which of these subunits rotate and which do not®@eneralization to théth site is
The rotation of they subunit relative to the: and 8 subunits
of ATP synthase was recently demonstrated using this tech-
nique|[8].

Polarization photobleaching labels the orientation of an
individual motor by destroying the ability of fluorophores Although exact the infinite sums are not so useful. However,
attached to that motor to absorb light of a particular polarthey can be collapsed into useful finite sums. Before pro-
ization. The ability of a motor population to absorb light at ceeding to the general case, consider the ddése2. For
different polarizations, i.e., the polarization anisotropy, is aN=2, Egs.(1) and(2) are
measure of the numbers of photobleached motors at different
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orientations. Thus polarization photobleaching is a means of i 14 M_2+ ,u_4+ 1+e 2 3
“synchronizing” the orientation of a population of motors, Xo(t)=e 21 41 2 ©
and polarization anisotropy is a means of tracking their sub-

sequent orientations. To understand the dynamics of the amnd

isotropy, one needs to know how the distribution of motor

orientations relaxes from the initial synchronized and highly o u®  wd 1 e %
anisotropic state to equilibrium, where orientations are uni- xy(t)=e | pt §+ §+ 2 “)

formly distributed.

The stochastic dynamics of flagellar rotation contribute toHere the Taylor expansions of cdgf) and sintiu) have
this relaxation. The statistical behavior of the flagellar motorbeen substituted with their identities. These results were ob-
matches that of a Poisson stepper—a Poisson stepper tak@é#ed by[11].
discrete steps that are separated by exponentially distributed Now consider the case of arbitral, Call the summation
waiting times—that takes at least 400 steps per revolutiof EQ. (1) fo. By inspection
[9]. Therefore an understanding of the relaxation of polariza-

tion anisotropy following polarization photobleaching re- %_f (5)
quires considerations of the stochastic dynamics of a Poisson duN 0

stepper walking along a cyclic lattice. These considerations

are the subject of this paper. The general solution of Ed5) is
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N—-1
f0: E Cke‘”kl‘-,
k=0

(6)

where ¢, is a constant and,=exp(27k/N). At u=0, fq
satisfies the conditions

d"f, 1 if n=0

d #=9=10 it nzo0 ™

in which 0=<n<N. Substituting Eq.(6) into Eq. (7) pro-
ducesN linearly independent equations:

N
E CkwE: dn 1
k=1

)

whered,=1 if n=0 andd,=0 if n=0. Note that

wp=expi27kn/N)=W,,. (9
But W, ,, are Fourier modes art}, is a discrete Fourier trans-
form of the coefficientg, . Therefore the inverse transform
of d,, yields the unknown coefficien{4.2]:

N-1
C=pg 2 daWok. (10
n=0
Sinced,=1 only if n=0,
1 1
Ck:N WOk:N. (ll)

In summary, the occupancy probability of the zeroth lat-

tice site given initial condition$7) is

1 N—-1
Xo(t)=e #fo=rg 2 e, (12

where o= exp(2m7k/N).
Call the summation in Eq2) f;. Adjacent lattice points

are related by a single differentiation:
df;

fi _ i+1 .
du

13

Using Egs.(12) and(13), the occupancy probabilities of all
lattice points are easily calculated.

Ill. AN ALTERNATE DERIVATION

Although the approach in Sec. Il is physically appealing,
another approach exploiting the mathematical structure of
the problem provides a different perspective. In Sec. Il, fea-

tures of the problem, e.g., Eq&) and (7), emerged which

facilitated its solution. Here the inevitability of these features

is shown.

Consider a Poisson stepper walking unidirectionally along
a cyclic lattice ofN sites. Each step occurs with a constant

probability per unit time\. Therefore the probability that a
stepper steps in an interval of tin& is A 6t. Let x; be the
occupancy probability of sité. How do theN occupancy
probabilities evolve with time?
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Consider the change in occupancy probability of site
+1, 641, in a small interval of timest. The positive prob-
ability flux to sitei+1 is due to the stepping of motors at
sitei. If the occupancy probability of siteis x; , the positive
flux is x;\ 6t. Also the negative flux due to steppers leaving
sitei+1 for sitei +2 is x;, 1\ 6t. Therefore

5Xi+1:Xi)\5t_Xi+1)\5t. (14)
With the substitutionsu =\ 6t and rearrangement, E¢L4)
becomes a first-order inhomogeneous differential equation:

(19

The occupancy probabilities of sites 1 andi are related to
the homogeneous solution of EG.5), exp(—w), and an in-
tegrating factorf by

Xj=e"H a (16)
and

Xjr1=€ “f. 17
Thereforex; andx;,, are related by

Xi=TXi 11, (18
where

T=g *# i e, (19
du

Successive operations ﬁyrelate the occupancy probability
of any lattice site to any other lattice site. Due to lattice
cyclicity

Xo= :I\-NXO . (20)
Calling g=e*xq, Eqgs.(18) and(20) produce
dg
duN 9 (21)

Let the initial condition for the probability density over
the lattice be

1 ifi=0
Xi(0=10 if i%0 (22
The initial condition translates into the condition
dg (1 if n=0
dz” P=9%0 if nzo0 (23

in which 0=n<N. From this point, the derivation o,
follows as in Sec. IIl. The evolution of the occupancy prob-

ability of other lattice points fronx, is calculated using.
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IV. AUTOCORRELATION ANALYSIS In Eg. (26), the dominant contribution is that which de-

Let » be a stochastic variable that switches between valS®Y> slowest, i.e., has the largest time constant. This mode

ues 0 and 1 over time. Its autocorrelation functioncorresponds to the root of unity with the largest real compo-

; - : nent: w,. For arbitraryN, Eq. (29) exactly relatesr; and
(v(t)»(0)) is the mean probability thar is 1 at both a 1 . S
randomly chosen initial time and at a tintelater. Let T, However, for the bacterial flagellar motdv>1 and a

) : . easonable estimate can be calculated in this limit. The Tay-
‘I’O.(t) hgve the val_ue_ 1. if the Poisson stepper is at the zerot r expansion ofw, keeping the first three terms is
lattice site and O if it is elsewhere. So the autocorrelation

function of ¥((t) is the mean probability that the stepper is 20 1 /(22
at the zeroth site at an initial time and at a tirhdater. w~1+i N2 (W) (30
However, xy(t) is the probability that a stepper is at the
zeroth lattice site at timegiven occupancy there &=0. Let  Combining Eqs(27), (28), and(30)
p be the probability of being at the origin &=0. For a
lattice with N sites,p=1/N. Hence N
Ti~— (31
A
Xo(t)
(Wo()Wo(0))=pXo(t) = =~ (24 and

. . P . . NT,
We have the stochastic variadi&’?y, of which x,(t) is the T (32)
autocorrelation. LeW; be the stochastic variable that has the 2m

value 1 if the stepper is at thigh lattice site and zero if

elsewhere. By similar arguments T,, the oscillatory period for the slowest decaying mode,

predictably corresponds to the mean rotation period of the

% (1) motor. The oscillations decay, more slowly with largé&ras

(Wi(H)¥o(0))= - (25) the number of steps increases, fluctuations in rotation rate of
N the flagellar motor are reduc¢d,9].

Hence the solutions for intermediate lattice sites are cross-
correlations of well-defined stochastic variables. This identi-
fication may prove useful in numerical studies or computa-

VI. ATP SYNTHASE AND THE BACTERIAL
FLAGELLAR MOTOR

tion. For N= 3, the summation in Eq26) has one term:
1 2 —t 2t
V. CALCULATION OF PROBABILITY DISTRIBUTION Xo(t)= = + = expg — | co§ — |. (33
RELAXATION TIMES 3 3 1 T

The probability amplitude at the zeroth site should oscil-Here, w1=exp(2/3). Using Eqs.(27) and (28), 7,=2/3\
late with a frequency equal to the motor rotation rate. AlscandT;=4mx/\v3. UsingT, x; andx, are readily calculated.
the oscillations should dampen as the probability distributionT hese results were obtained by Sabbert and JihHeusing
broadens over the lattice points. Substituting,  matrix methods.
=exp(27k/N) into Eqg.(12) gives For the bacterial flagellar motoN=400[9]. Keeping the

dominant mode in Eq26) we have

E[(N-1)/2]
—t
=_ 4= i - 1 2 t
WO=NIN exp( ™ C“( T ) 29 Xo(t)~ 75+ —400exp(—20)coszwft>, (34

where 7, _is the time constant fgr decay of_ theh Fourier wheref is rotation frequency. Figure 1 depicts a stochastic
mode which has oscillatory periofi,. E(m) is the integral  simulation forN=400 and the theoretical prediction for its
part of m. The constants are dominant mode.

1 VII. CONCLUSIONS
Y Ral—w) (27)
N Re1—wy)

Tk
Polarization anisotropy should allow us to identify com-
ponents of the flagellar motor that rotate, provided that they

and can be fluorescently labeled and bleached. Since the number
o of sites in the lattice is expected to be much larger than that
Ty=———. (28) of ATP synthasgN=3, [8]), the signal should ring at the
A Im(wy) rotation frequency equatiai34). In addition, the conclusions

) ) ) , reached earlief4,9], namely, that the motor is not a fluid
The time constant of a mode is related to its rotation fre-yrye and that its statistical behavior matches that of a Pois-
quencyf,=1/Ty by son stepper that takes at least 400 steps per revolution, can
be corroborated in anisotropy studies by comparing oscilla-
_ 1 (29 tory period to decay time constant, H82). By using free-
N—[N%—(2=f )2]Y% spinning fla-

T
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100 As noted above, this paper complements an earlier study
R aimed at understanding the dynamics of polarization anisot-
5 80 1 ropy following polarization photobleaching of ATP synthase,
§> . a stochastic rotary motor in whidd= 3 [11]. However, our
S 60 1o . calculations produce straight-forward analytic results without
2 Lo - requiring matrix manipulations. Novel features of this work
§ Or are (a) an operator interrelates the solutions for the occu-
§, 20 pancy probabilities of all site€l9); (b) the time constant for

decay of each Fourier mode of occupancy probability is di-
rectly related to its oscillatory frequen¢®9); (c) an approxi-

_ . ‘ mation valid for largeN provides a simple formula to de-
Time (arbitrary units) scribe the behavior of the bacterial flagellar maoa4).

FIG. 1. The number of motors at the zeroth site as a function of
time resulting from a simulation of 10 000 Poisson motors each
with 400 lattice sites. Points indicate the results of the stochastic
simulation_. The solid line is the theoretical prediction for the slow- Thanks to Alan Stern for pointing out the utility of Fou-
est decaying mode, E¢34). rier transforms. We gratefully acknowledge Wolfgang Junge

for introducing us to these very interesting stochastic prob-
gella with proximal hooks but no filaments, anisotropy stud-lems. Thanks to Howard Stone for his generous assistance.
ies can explore a regime of motor function—low-torque, This work was supported by the Rowland Institute for Sci-
high speed—otherwise difficult to access. These experimenence. A.D.T.S. received a stipend from a NIH Molecular
are in preparation. Biophysics Training Grant.
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