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Statistical kinetics of the bacterial flagellar motor
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The statistical behavior of the bacterial flagellar motor matches that of a Poisson stepper that takes at least
400 steps per revolution. Using this fact, we study the effect of motor stochastics on experiments in which
fluorescent motors, initially synchronized by polarization photobleaching, become uncorrelated.
@S1063-651X~97!06106-0#

PACS number~s!: 87.22.2q, 87.10.1e, 82.40.2g, 05.40.1j
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I. INTRODUCTION

A bacterial flagellum is driven at its base by a rota
motor @1#. Numerous studies have classified the subunits
this motor into functional and structural groups. The sta
includes a discrete set of torque-generating units compri
the proteins MotA and MotB@2,3#. Each unit steps indepen
dently along a ring of lattice sites attached to the rotor@4#.
The likely location of these sites is in the C-terminal doma
of the protein FliG, a component of the MS and C rings@5#.
For a recent review of motor structure see Macnab@6#.

Motor function is usually studied by tethering a sing
flagellar filament to glass; the relative motion of the sta
and rotor is inferred from the motion of the tethered c
body@7#. However, the relative motion of subunits within th
motor might be directly measurable using polarization
isotropy. Which of these subunits rotate and which do n
The rotation of theg subunit relative to thea andb subunits
of ATP synthase was recently demonstrated using this te
nique @8#.

Polarization photobleaching labels the orientation of
individual motor by destroying the ability of fluorophore
attached to that motor to absorb light of a particular pol
ization. The ability of a motor population to absorb light
different polarizations, i.e., the polarization anisotropy, is
measure of the numbers of photobleached motors at diffe
orientations. Thus polarization photobleaching is a mean
‘‘synchronizing’’ the orientation of a population of motors
and polarization anisotropy is a means of tracking their s
sequent orientations. To understand the dynamics of the
isotropy, one needs to know how the distribution of mo
orientations relaxes from the initial synchronized and hig
anisotropic state to equilibrium, where orientations are u
formly distributed.

The stochastic dynamics of flagellar rotation contribute
this relaxation. The statistical behavior of the flagellar mo
matches that of a Poisson stepper—a Poisson stepper
discrete steps that are separated by exponentially distrib
waiting times—that takes at least 400 steps per revolu
@9#. Therefore an understanding of the relaxation of polari
tion anisotropy following polarization photobleaching r
quires considerations of the stochastic dynamics of a Pois
stepper walking along a cyclic lattice. These considerati
are the subject of this paper.
551063-651X/97/55~6!/7801~4!/$10.00
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II. EVOLUTION OF PROBABILITY DENSITY
OF A POISSON STEPPER ON A CYCLIC LATTICE

Given a stepper initially at the zeroth site on a cyc
lattice ofN sites, the probability of the stepper being at t
i th site at timet is the probability that the stepper has tak
jN1 i steps wherej is a positive integer. So the probabilit
that the stepper is at the zeroth site at timet is the sum of the
probabilities that the stepper has made 0,N,2N,... steps. If
the stepper is Poisson, each of these probabilities is give
the Poisson formula~e.g.,@10#! yielding the sum

x0~ t !5e2m(
j50

`
m jN

~ jN !!
. ~1!

Herem is the mean number of steps taken in timet. The
generalization to thei th site is

xi~ t !5e2m(
j50

`
m jN1 i

~ jN1 i !!
. ~2!

Although exact the infinite sums are not so useful. Howev
they can be collapsed into useful finite sums. Before p
ceeding to the general case, consider the caseN52. For
N52, Eqs.~1! and ~2! are

x0~ t !5e2mS 11
m2

2!
1

m4

4!
1••• D5

11e22m

2
~3!

and

x1~ t !5e2mS m1
m3

3!
1

m5

5!
1••• D5

12e22m

2
. ~4!

Here the Taylor expansions of cosh~m! and sinh~m! have
been substituted with their identities. These results were
tained by@11#.

Now consider the case of arbitraryN. Call the summation
in Eq. ~1! f 0 . By inspection

dNf 0
dmN 5 f 0 . ~5!

The general solution of Eq.~5! is
7801 © 1997 The American Physical Society
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f 05 (
k50

N21

cke
vkm, ~6!

whereck is a constant andvk5exp(i2pk/N). At m50, f 0
satisfies the conditions

dnf 0
dmn ~m50!5 H1 if n50

0 if nÞ0 ~7!

in which 0<n,N. Substituting Eq.~6! into Eq. ~7! pro-
ducesN linearly independent equations:

(
k51

N

ckvk
n5dn , ~8!

wheredn51 if n50 anddn50 if n50. Note that

vk
n5exp~ i2pkn/N!5Wkn . ~9!

ButWkn are Fourier modes anddn is a discrete Fourier trans
form of the coefficientsck . Therefore the inverse transform
of dn yields the unknown coefficients@12#:

ck5
1

N (
n50

N21

dnWnk . ~10!

Sincedn51 only if n50,

ck5
1

N
W0k5

1

N
. ~11!

In summary, the occupancy probability of the zeroth l
tice site given initial conditions~7! is

x0~ t !5e2m f 05
1

N (
k50

N21

e~vk21!m, ~12!

wherevk5exp(i2pk/N).
Call the summation in Eq.~2! f i . Adjacent lattice points

are related by a single differentiation:

f i5
d fi11

dm
. ~13!

Using Eqs.~12! and ~13!, the occupancy probabilities of a
lattice points are easily calculated.

III. AN ALTERNATE DERIVATION

Although the approach in Sec. II is physically appealin
another approach exploiting the mathematical structure
the problem provides a different perspective. In Sec. II, f
tures of the problem, e.g., Eqs.~5! and ~7!, emerged which
facilitated its solution. Here the inevitability of these featur
is shown.

Consider a Poisson stepper walking unidirectionally alo
a cyclic lattice ofN sites. Each step occurs with a consta
probability per unit timel. Therefore the probability that a
stepper steps in an interval of timedt is ldt. Let xi be the
occupancy probability of sitei . How do theN occupancy
probabilities evolve with time?
-

,
of
-

s

g
t

Consider the change in occupancy probability of sitei
11, dxi11 , in a small interval of timedt. The positive prob-
ability flux to site i11 is due to the stepping of motors a
site i . If the occupancy probability of sitei is xi , the positive
flux is xildt. Also the negative flux due to steppers leavi
site i11 for site i12 is xi11ldt. Therefore

dxi115xildt2xi11ldt. ~14!

With the substitutiondm5ldt and rearrangement, Eq.~14!
becomes a first-order inhomogeneous differential equatio

dxi11

dm
1xi115xi . ~15!

The occupancy probabilities of sitesi11 andi are related to
the homogeneous solution of Eq.~15!, exp(2m), and an in-
tegrating factorf by

xi5e2m
d f

dm
~16!

and

xi115e2m f . ~17!

Thereforexi andxi11 are related by

xi5T̂xi11 , ~18!

where

T̂5e2m
d

dm
em. ~19!

Successive operations byT̂ relate the occupancy probabilit
of any lattice site to any other lattice site. Due to latti
cyclicity

x05T̂Nx0 . ~20!

Calling g5emx0 , Eqs.~18! and ~20! produce

dNg

dmN 5g. ~21!

Let the initial condition for the probability density ove
the lattice be

xi~0!5 H1 if i50
0 if iÞ0. ~22!

The initial condition translates into the condition

dng

dmn ~m50!5 H1 if n50
0 if nÞ0 ~23!

in which 0<n,N. From this point, the derivation ofx0
follows as in Sec. II. The evolution of the occupancy pro
ability of other lattice points fromx0 is calculated usingT̂.
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IV. AUTOCORRELATION ANALYSIS

Let n be a stochastic variable that switches between
ues 0 and 1 over time. Its autocorrelation functi
^n(t)n(0)& is the mean probability thatn is 1 at both a
randomly chosen initial time and at a timet later. Let
C0(t) have the value 1 if the Poisson stepper is at the ze
lattice site and 0 if it is elsewhere. So the autocorrelat
function ofC0(t) is the mean probability that the stepper
at the zeroth site at an initial time and at a timet later.
However, x0(t) is the probability that a stepper is at th
zeroth lattice site at timet given occupancy there att50. Let
p be the probability of being at the origin att50. For a
lattice withN sites,p51/N. Hence

^C0~ t !C0~0!&5px0~ t !5
x0~ t !

N
. ~24!

We have the stochastic variableN1/2c0 of which x0(t) is the
autocorrelation. LetC i be the stochastic variable that has t
value 1 if the stepper is at thei th lattice site and zero if
elsewhere. By similar arguments

^C i~ t !C0~0!&5
xi~ t !

N
. ~25!

Hence the solutions for intermediate lattice sites are cro
correlations of well-defined stochastic variables. This ide
fication may prove useful in numerical studies or compu
tion.

V. CALCULATION OF PROBABILITY DISTRIBUTION
RELAXATION TIMES

The probability amplitude at the zeroth site should os
late with a frequency equal to the motor rotation rate. A
the oscillations should dampen as the probability distribut
broadens over the lattice points. Substitutingvk
5exp(i2pk/N) into Eq. ~12! gives

x0~ t !5
1

N
1
2

N (
k51

E@~N21!/2#

expS 2t

tk
D cosS 2pt

Tk
D , ~26!

wheretk is the time constant for decay of thekth Fourier
mode which has oscillatory periodTk . E(m) is the integral
part ofm. The constants are

tk5
1

l Re~12vk!
~27!

and

Tk5
2p

l Im~vk!
. ~28!

The time constant of a mode is related to its rotation f
quencyf k51/Tk by

t5
1

l2@l22~2p f !2#1/2
. ~29!
l-
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In Eq. ~26!, the dominant contribution is that which de
cays slowest, i.e., has the largest time constant. This m
corresponds to the root of unity with the largest real com
nent:v1 . For arbitraryN, Eq. ~29! exactly relatest1 and
T1 . However, for the bacterial flagellar motor,N@1 and a
reasonable estimate can be calculated in this limit. The T
lor expansion ofv1 keeping the first three terms is

v1'11 i
2p

N
2
1

2 S 2p

N D 2. ~30!

Combining Eqs.~27!, ~28!, and~30!

T1'
N

l
~31!

and

t1'
NT1
2p2 . ~32!

T1 , the oscillatory period for the slowest decaying mod
predictably corresponds to the mean rotation period of
motor. The oscillations decay, more slowly with largerN; as
the number of steps increases, fluctuations in rotation rat
the flagellar motor are reduced@4,9#.

VI. ATP SYNTHASE AND THE BACTERIAL
FLAGELLAR MOTOR

For N53, the summation in Eq.~26! has one term:

x0~ t !5
1

3
1
2

3
expS 2t

t1
D cosS 2pt

T1
D . ~33!

Here,v15exp(i2p/3). Using Eqs.~27! and ~28!, t152/3l
andT154p/l). UsingT̂, x1 andx2 are readily calculated
These results were obtained by Sabbert and Junge@11# using
matrix methods.

For the bacterial flagellar motor,N'400 @9#. Keeping the
dominant mode in Eq.~26! we have

x0~ t !'
1

400
1

2

400
expS 2 f t

20 D cos~2p f t !, ~34!

where f is rotation frequency. Figure 1 depicts a stochas
simulation forN5400 and the theoretical prediction for it
dominant mode.

VII. CONCLUSIONS

Polarization anisotropy should allow us to identify com
ponents of the flagellar motor that rotate, provided that th
can be fluorescently labeled and bleached. Since the num
of sites in the lattice is expected to be much larger than
of ATP synthase~N53, @8#!, the signal should ring at the
rotation frequency equation~34!. In addition, the conclusions
reached earlier@4,9#, namely, that the motor is not a flui
drive and that its statistical behavior matches that of a P
son stepper that takes at least 400 steps per revolution,
be corroborated in anisotropy studies by comparing osc
tory period to decay time constant, Eq.~32!. By using free-
spinning fla-
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gella with proximal hooks but no filaments, anisotropy stu
ies can explore a regime of motor function—low-torqu
high speed—otherwise difficult to access. These experim
are in preparation.

FIG. 1. The number of motors at the zeroth site as a function
time resulting from a simulation of 10 000 Poisson motors e
with 400 lattice sites. Points indicate the results of the stocha
simulation. The solid line is the theoretical prediction for the slo
est decaying mode, Eq.~34!.
-
,
ts

As noted above, this paper complements an earlier st
aimed at understanding the dynamics of polarization ani
ropy following polarization photobleaching of ATP synthas
a stochastic rotary motor in whichN53 @11#. However, our
calculations produce straight-forward analytic results with
requiring matrix manipulations. Novel features of this wo
are ~a! an operator interrelates the solutions for the oc
pancy probabilities of all sites~19!; ~b! the time constant for
decay of each Fourier mode of occupancy probability is
rectly related to its oscillatory frequency~29!; ~c! an approxi-
mation valid for largeN provides a simple formula to de
scribe the behavior of the bacterial flagellar motor~34!.
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